Agrodom93.ru

Агропромышленный комплекс
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Большинство патогенных микроорганизмов выращивают

Сборник тестов по Микробиологии с ответами

Перечень тестовых заданий. Правильные ответы обозначены » * «

1) К микроорганизмам, не имеющим клеточного строения, относятся:

2) Впервые увидел бактерии:

3) Бактерии, питающиеся за счет готовых органических соединений:

4) Бактерии, использующие для построения своих клеток диоксид углерода и другие органические соединения:

5) Нитрифицирующие бактерии являются:

6) Основным регулятором поступления органических веществ в клетку является:

*1. цитоплазматическая мембрана

7 — Тест) Микроорганизмы, которые приспособились в процессе эволюции к низким температурам:

8) Микроорганизмы одного вида или подвида, выращенные в лабораторных условиях на искусственных питательных средах:

*1. чистая культура

2. смешанная культура

9) Микроорганизмы почвы, способные получать необходимую им энергию от окисления минеральных соединений:

10) Обрабатывание мазка хромовой кислотой, карболовым фуксином Пиля и окрашивание метиленовым синим характерно для:

1. метода Шеффера-Фултона

*2. метода Меллера

3. метода Муромцева

4. метода Романовского-Гимза

11) Обрабатывание мазка раствором малахитовой зелени и дополнительное окрашивание водным раствором сафранина характерно для:

1. метода Меллера

2. метода Муромцева

3. метода Романовского-Гимза

*4. метода Шеффера-Фултона

12) Бактерии, имеющие на одном или обоих концах тела пучок жгутиков, называются:

13) Скопления бактерий, напоминающие внешне грозди винограда, называются:

14) В процентном соотношении вода в микробной клетке составляет:

15) О свежем фекальном загрязнении почвы свидетельствует обнаружение:

3. яиц гельминтов

16) При загрязнении органическими веществами в почве обнаруживают микроорганизмы:

*2. семейства кишечных бактерий

3. паратифа А и В

17) Плесневый гриб, имеющий мицелий белого цвета с перегородками:

1. шоколадная плесень

2. гроздевидная плесень

3. головчатая плесень

*4. молочная плесень

18) По окончании работы лицевые части противогазов и респираторов необходимо тщательно мыть:

1. 0,1-%-м раствором перманганата калия

2. 5-%-м раствором соды

*3. 2-%-м раствором соды

4. 0,5-%-м мыльным раствором

20) К химическим средствам дезинфекции относятся:

1. термофильные микробы

*2. фенолы и креоны

21) Для чистой почвы коли-титр кишечной палочки должен составлять:

2. не более 10 мг

22) Для определения количества живых бактерий в нитрагине делают глубинный посев:

1. на маннитный агар-агар

*2. на бобовый агаг-агар

3. на дрожжевой агар-агар

4. на мясопептонный агар-агар

24) Для борьбы с плесенью используют:

*4. оксидифенолят натрия

25) Перитрихи-это бактерии:

1. с полярно расположенными пучками жгутиков

*2. со жгутиками по всей поверхности клетки

3. не имеющие жгутиков

4. с двумя полярными жгутиками

26) К осветительной системе биологического микроскопа не относится:

27. Тест. ) К прямым санитарно-биологическим показателям эпидемической опасности почвы относятся:

1. обнаружение яиц гельминтов и их личинок

2. обнаружение сальмонелл и бактерий паратифа А и В

3. обнаружение стафилококков и стрептококков

*4. обнаружение патогенных энтеробактерий и энтеровирусов

28) Актиномицеты-это:

2. палочковидные бактерии

*3. ветвящиеся бактерии

30) Для изучения морфологии плесневых грибов препараты готовят:

1. методом Шеффера-Фултона

2. методом Меллера

3. методом висячей капли

*4. методом раздавленной капли

31) Хранение пестицидов должно происходить в специально оборудованных складах на расстоянии от населённого пункта:

1. не менее 50 м

2. не менее 100 м

*3. не менее 200 м

4. не менее 500 м

32) Антибиотикограмма — это:

*1. определение чувствительности микробов к антибиотикам

2. определение чувствительности антибиотиков к микробам

3. определение чувствительности животных к антибиотикам

4. определение чувствительности растений к антибиотикам

33) Дезинфицирующее средство имеет бактериостатическое действие, когда оно:

*1. задерживает при определённых условиях рост микроорганизмов, но не приводит к их гибели

2. способно убить микробную клетку

3. вызывает в микробной клетке биохимические изменения

4. вызывает в микробной клетке морфологические изменения

34) К основным группам микроорганизмов не относятся :

35) Отдалённая корневая микрофлора растений располагается :

1. в радиусе 6-10 см от корней

2. в радиусе 2-3 м от корней

*3. в радиусе 50 см от корней

4. в радиусе 1 м от корней

36) Конечными продуктами разложения органических веществ анаэробными микроорганизмами являются:

1. углекислый газ и вода

2. молочная кислота и спирт

3. клетчатка и лигнин

*4. кислоты и спирты

37) При работе с инсектицидами необходимо использовать респираторы:

1. «Лепесток-200», У-2К

Тест № 38) Для дезинфекции почвы в парниковых хозяйствах используют:

4. бромид метила

39) Термофилы-это бактерии, развивающиеся при температуре:

1. 30-40 градусов

*3. 50-70 градусов

4. 70-80 градусов

40) Микроорганизмы, занимающие промежуточное положение между плесневыми грибами и бактериями:

41) Система мероприятий по уничтожению патогенных или условно-патогенных микроорганизмов во внешней среде или на теле животного:

42) Бактерии, образующие цепочку при делении кокков:

43) Олиготрофные микроорганизмы почвы — это:

*1. микроорганизмы, способные ассимилировать органические соединения из растворов низкой концентрации

2. микроорганизмы, способные получать необходимую им энергию от окисления минеральных соединений

3. микроорганизмы, разлагающие органические соединения растительного и животного происхождения

4. микроорганизмы, способные разлагать перегнойные соединения почвы

44) Бактерии по типу дыхания подразделяются на:

1. олиготрофы и сапрофиты

2. анаэрофобы и анаэрофаги

3. аэрофобы и анаэрофобы

*4. аэробы и анаэробы

45) О возможности загрязнения почвы патогенными энтеробактериями свидетельствует индекс санитарно-показательных микроорганизмов БГКП (колиформ) и энтерококков в колличестве:

1. до 10 клеток на 1 г почвы

*2. 10 и более клеток на 1 г почвы

3. до 100 клеток на 1 г почвы

4. 10 и более клеток на 10 г почвы

46) К физическим средствам дезинфекции относятся:

1. соли тяжелых металлов

2. термофильные микробы

*3. гамма лучи и ультразвук

4. патогенные грибы

47) Метод, позволяющий определить минимальную концентрацию антибиотика, подавляющего рост исследуемой культуры бактерий:

1. метод диффузии в агар

*3. метод серийных разведений

49) Извитые бактерии, имеющие тонкие многочисленные завитки:

50) Один из первых микроскопов изобрел в 1610 году:

51) Микроорганизмы, разлагающие органические соединения растительного и животного происхождения — это:

53) При окрашивании препарата по методу Муромцева микробная клетка окрашивается:

1. в голубой цвет

2. в бледно-розовый цвет

3. в фиолетовый цвет

*4. в темно-синий цвет

54) Микроорганизмы, развивающиеся на поверхности растений, называются:

56) Микробы, поражающие и подавляющие растения, являются:

57 Тест.) Для количественного учета почвенных микроорганизмов используют:

1. аппликационный метод

*3. метод питательных пластин в сочетании с методом последовательных разведений

Влияние факторов внешней среды на микроорганизмы

По отношению к температуре большинство патогенных микроорганизмов являются:

Оптимальной температурой роста для термофилов является:

Большинство патогенных микробов выращивают при температуре:

К низким температурам особенно чувствительны:

-возбудители сибирской язвы

Устойчивые к действию высоких и низких температур:

+споры сибирской язвы

Химическое вещество используемое для дезинфекции:

К поверхностно-активным веществам относятся:

+жирные кислоты, мыла

Вещества обладающие олигодинамическим действием:

+растворы серебра, ртути

Химические вещества — окислители, нарушающие деятельность ферментов, вызывающие денатурацию белков:

-соли тяжелых металлов

Химические вещества, используемые для обеззараживания ран, кожи:

Перевязочный материал стерилизуют в:

Наиболее надежный, эффективный способ стерилизации:

Стерилизацию воздуха в операционных, больницах, боксах проводят:-

Для приготовления 1 л. 1% раствора хлорамина необходимо взять вещества:

+химические вещества, используемые для лечения человека обеззараживания ран

-вещества, применяемые для стерилизации

-вещества, содержащие детергенты

+полное освобождение объекта от микроорганизмов

-система мероприятий, препятствующих микробному загрязнению объекта

-полное освобождение объекта от болезнетворных микроорганизмов

-комплекс мероприятий, направленных на уничтожение патогенныз и условно-патогенных микроорганизмов

В автоклаве стерилизуют:

-жидкости, содержащие белок

-одноразовые медицинские инструменты

Красители оказывают на микроорганизмы действие:

-снижают поверхностное натяжение

-вызывают повышение давления внутри клетки

+задерживают рост и размножение микроорганизмов

На жизнедеятельность бактерий не оказывает действия:

Действие альдегидов на бактериальную клетку:

-задерживают рост и размножение микроорганизмов

+приводят к денатурации белка

-вызывают окисление белка

-снижают поверхностное натяжение

studopedia.org — Студопедия.Орг — 2014-2021 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.002 с) .

Большинство патогенных микроорганизмов выращивают

Жизнь организмов определяется температурой больше, чем каким-либо фактором внешней среды, в связи с тем, что все организмы построены из химических компонентов и все процессы жизни происходят на основе химических реакций, подчиненных законам термодинамики. Температура действует не только на скорость химических реакций, но также является причиной структурной перестройки протеинов, фазовых перемещений жиров, изменения структуры воды. Температурная амплитуда биохимической активности относительно мала в связи со специфическими свойствами биомолекул.
Витальная температурная зона, в пределах которой осуществляется активная жизнедеятельность микроорганизмов, за некоторым исключением, укладывается в рамки от 0 o до 50-60 o С. Нижняя граница активной жизнедеятельности микроорганизмов лимитируется, прежде всего, капельно-жидкой водой, постоянным потоком которой в клетке поддерживается трехмерность белковых молекул и других структурных носителей жизни и протекающие процессы ассимиляции и диссимиляции. Поэтому кристаллизация воды в омывающих жидкостях и клетках служит критическим порогом их жизни. Однако, если верхний порог витальной зоны, который определяется тепловой коагуляцией белков, довольно узок, то нижняя граница зоны жизнедеятельности более широка и «размыта», вследствие многих прямых и косвенных адаптаций к сохранению части воды в жидком состоянии, выработавшихся у организмов в процессе эволюции. Судя по многочисленным фактам выживания микроорганизмов после глубокого охлаждения, холод не нарушает органических соединений, и при нагревании микробные тела возвращаются к жизни.
По отношению к температурным условиям микроорганизмы разделяют на мезофильные, психрофильные и термофильные (см.рис1). Деление бактерий на указанные группы довольно условно, так как температурные диапазоны их роста значительно перекрываются.

Большинство известных видов относится к мезофилам, у которых оптимальные температуры роста лежат между 3 o и 40 o , а температурный диапазон, в котором возможен рост находится между 10 и 45-50 o . типичным мезофилом является E. сoli: нижняя граница роста +10 o , верхняя +49 o , оптимальная температура +37 o при росте на богатой среде.
Психрофилы и факторы, определяющие возможнсоть роста при низких температурах. Область температур роста психрофилов лежит в пределах от –10 до +20 o и выше. В свою очередь психрофилы делятся на облигатных и факультативных.
Основное различие между подгруппами заключается в том, что облигатные психрофилы не способны к росту при температуре выше 20 o 0 а верхняя температурная граница роста факультативных форм намного выше. Различаются они также и оптимальными температурными зонами роста, находящимися у облигатных психрофилов значительно ниже, чем у факультативных. Принципиальное же сходство между ними – способность к росту при 0 o и минусовых температурах.

Термофилы и механизм термофилии.

Группу термофилов делят на 4 подгруппы:

  1. Термотолерантные виды растут в пределах от 10 до 55 – 60 o , оптимальная область лежит при 35 — 40 o .
  2. Факультативные термофилы имеют максимальную температуру роста между 50 и 65 o , но способны также к размножению при комнатной температуре (20 o ). К облигатным термофилам относят виды, обнаруживающие способность расти при температурах около 70 o и не растущие ниже 40 o .
  3. Наконец, недавно обнаружены прокариоты, выделенные в подгруппу экстремальных термофилов. Для них характерны следующие температурные параметры: оптимум в области 80 –105 o , минимальная граница роста 60 o и выше, максимальная – до 110 o . К экстримальным термофилам относятся организмы из группы архебактерий, не имеющие аналогов среди мезофилов, например представители родов Thermoproteus, Pyrococcus, Pyrodictium и др.

Появились публикации об обнаружении бактерий, способных расти при температуре воды 250 – 300 o С и давлении 265 атм (при этом давлении вода в жидком состоянии может находиться до 460 o С). Эти бактерии выделены из проб воды поднятых с глубины 2560 м над поверхностью Тихого океана, где предположительно они существуют в горячих струях, выбрасываемых на дне океана так называемыми «черными гейзерами». Давление в районе обнаружения бактерий около 250 атм, а температура воды может быть выше 350 o С. В связи с этим исследователи начинают переоценивать границы условий, при которых способны развиваться прокариоты. Высказывается предположение, что прокариоты могут существовать везде, где есть вода в жидком состоянии и достаточное количество питательных веществ.
Высокая температура вызывает коагуляцию структурных белков и ферментов микроорганизмов. Большинство вегетативных форм гибнет при 60 o С в течение 30 мин, а при 80-100 o С – через 1мин. Для сохранения жизнеспособности относительно благоприятны низкие температуры (например, ниже 0 o С), безвредные для большинства микробов. Бактерии выживают при температуре ниже -100 o С; споры бактерий и вирусы годами сохраняются в жидком азоте. Простейшие и некоторые бактерии (спирохеты, риккетсии и хламидии) менее устойчивы к температурным воздействиям.
Воздействие высоких температур широко используется в лабораторной микробиологической практике. Стерилизация (sterilis –бесплодный) объектов проводится методами автоклавирования, кипячения, тиндализации, пастеризации, фламбирования, стерилизацией сухим жаром, паром без давления.
В хирургической практике стерилизуют инструменты, растворы, перевязочный материал.

Холодоустойчивость микроорганизмов

Патогенные микроорганизмы и их основные характеристики

Инфекция – сложный биологический процесс, возникающий в результате проникновения патогенных микробов в организм и нарушения постоянства его внутренней среды. Возникновение инфекции зависит от нескольких факторов: степени патогенности (вирулентности) микроба, состояния макроорганизма и условий внешней среды.

Патогенность – это способность микроба определенного вида при соответствующих условиях вызывать характерное для него инфекционное заболевание. Следовательно, патогенность есть видовой признак.

Вирулентность – это степень патогенности определенного штамма микроба, т. е. индивидуальный признак. Например, бацилла сибирской язвы является патогенной, так как обладает свойством вызывает заболевание сибирской язвой. Но штамм одной культуры вызывает заболевание и смерть через 96 часов, а другой – через 6-7 дней. Следовательно, вирулентность первого штамма более высокая, чем второго.

Вирулентность микроба может быть повышена путем его пассажей через чувствительный организм лабораторных животных, т.е. последовательным заражением ряда животных (после гибели первого зараженного животного выделенными из него микробами заражают следующее животное и т.д.). В естественных условиях вирулентность бактерий повышается путем пассажа через восприимчивый организм, поэтому больных заразной болезнью необходимо немедленно изолировать от здоровых. Снизить вирулентность микроба в лабораторных условиях можно путем пересевов и выращивания на питательных средах при повышенной температуре или при добавлении в среду некоторых химических веществ (бычья желчь, слабый раствор карболовой кислоты и пр.). Основываясь на этом принципе, готовят ослабленные живые вакцины, которые затем применяют против заразных болезней. Вирулентность микроба может понижаться и в естественных условиях под действием солнечных лучей, высушивания и пр. Таким образом, вирулентность как мера патогенности – величина переменная. Она может быть повышена, понижена и даже утеряна. Патогенность как особое качество болезнетворного вида микроба проявляется в агрессивных его свойствах и в токсическом действии на организм. Агрессивность – это способность патогенного микроба жить, размножаться и распространяться в организме, противостоять неблагоприятным влияниям, оказываемым организмом. Некоторые патогенные микробы, размножаясь в организме или на питательной среде в пробирке, вырабатывают растворимые продукты, получившие название агрессины. Назначение агрессинов — подавлять действие фагоцитов. Сами агрессины безвредны для организма, но если их прибавить к несмертельной дозе культуры соответствующего микроба, они вызывают смертельно протекающую инфекцию.

Токсичность – способность патогенного микроба вырабатывать и выделять ядовитые вещества, вредно действующие на организм. Токсины бывают двух видов – экзотоксины и эндотоксины.

Экзотоксины – выделяются в окружающую среду при жизни микробов в организме или на искусственных питательных средах, а также в пищевых продуктах. Они очень ядовиты. Например, 0,005 мл жидкого столбнячного токсина или 0,0000001 мл ботулинического токсина убивает морскую свинку. Микробы, способные образовывать токсины, получили название токсигенных Под влиянием нагревания и света экзотоксины легко разрушаются, а под действием некоторых химических веществ теряют токсичность. Эндотоксины прочно связаны с телом микробной клетки и освобождаются только после ее гибели и разрушения. Они весьма устойчивы при действии высоких температур и не разрушаются даже после нескольких часов кипячения. Ядовитое действие многих бактерийных экзотоксинов связано с ферментами – лецитиназой (разрушает эритроциты), коллагеназой, гиалуронидазой (расщепляет гиалуроновую кислоту) и рядом других ферментов, которые производят в организме разрушение жизненно важных соединений. Условленно также, что некоторые патогенные бактерии (дифтерийные стафилококки и стрептококки) продуцируют фермент дезоксирибонуклеазу В процессе жизнедеятельности патогенные микробы выделяют и другие вещества, обусловливающие их вирулентность.

Пути внедрения патогенных микробов в организм

Место проникновения патогенных микробов в организм называется входными воротами инфекции. В естественных условиях заражение происходит через пищеварительный тракт (алиментарный путь), когда в пищу или в воду попадают патогенные микроорганизмы. Болезнетворное начало может проникать через поврежденные, а при некоторых инфекционных болезнях (бруцеллез) и неповрежденные слизистые оболочки рта, носа, глаз, мочеполовых путей и кожу. Судьба патогенных микробов, попавших в организм, может быть различной – в зависимости от состояния организма и вирулентности возбудителя. Некоторые микробы, попав с током крови в определенные органы, оседают (задерживаются) в их тканях, размножаются в них, выделяют токсины и вызывают заболевание. Например, возбудитель туберкулеза в легочной ткани. Любая инфекционная болезнь, независимо от клинических признаков и локализации микроба в организме, представляет собой заболевание всего организма. Если патогенные микробы проникли в кровеносные сосуды и начинают размножаться в крови, то они очень быстро проникают во все внутренние органы и ткани. Такую форму инфекции называют септицемией. Она характеризуется быстротой и злокачественностью течения и нередко заканчивается смертельным исходом. Когда микробы находятся в крови временно и не размножаются в ней, а посредством ее только переносятся в другие чувствительные ткани и органы, где затем уже размножаются, инфекцию принято называть бактериемией. Иногда микробы, проникнув в организм, остаются только в поврежденной ткани и, размножаясь выделяют токсины. Последние, проникая в кровь, вызывают общее тяжелое отравление (столбняк, злокачественный отек). Такой процесс называется токсемией. Пути выделения патогенных микробов из организма также различны: со слюной, мокротой, мочой, калом, молоком, выделениями из родовых путей.

Читать еще:  Где лучше выращивать огурцы в теплице или в парнике

Условия возникновения инфекций и значение состояния организма в этом процессе

Для возникновения инфекционного процесса требуется минимально заражающая доза микроба; однако чем больше проникло в организм микробов, тем скорее развивается болезнь. Чем вирулентнее микроб, тем быстрее наступают все клинические признаки болезни. Имеют значение и ворота инфекций. Например, после введения в легкие морской свинки 1 – 2 туберкулезных микробов может возникнуть заболевание, а чтобы вызвать заболевание путем подкожной инъекции микробов, надо ввести не меньше 800 живых туберкулезных палочек.

Одно из необходимых условий для возникновения заболевания – восприимчивость организма к данной инъекции очень восприимчивы, а к другим устойчивы. Например, крупный рогатый скот не заражается сапом лошадей, а чума свиней совершенно неопасно в смысле заражения для человека. Исключительно важное значение для возникновения инфекционного процесса имеет состояние организма. И.И.Мечников писал: «Болезнь, помимо внешних причин – микробов, обязана своим происхождением еще и внутренним условиям самого организма. Болезнь наступает тогда, когда эти внутренние причины оказываются бес сильными помешать развитию болезнетворных микробов; когда они, наоборот, успешно борются с микробами, то организм оказывается невосприимчивым. Проникновение патогенного микроба в чувствительный организм вовсе не обязательно вызывает соответствующее заболевание». Устойчивость организма против инфекции снижается при плохом питании. Влияет также простудный фактор, перегревание, радиация, отравление алкоголем и пр. Течение инфекционного заболевания Инфекционный процесс проявляется не сразу после внедрения патогенного микроба в организм, а спустя некоторый срок. Время от внедрения микробов в организм до появления первых клинических признаков заболевание называют скрытым, или инкубационным, периодом. Продолжительность его определяется вирулентностью и количеством внедрившихся микробов, воротами инфекции, состоянием организма и окружающими условиями. За период инкубации внедрившиеся микробы размножаются, производят качественные биологические изменения в организме, в результате чего появляются клинические признаки. По длительности течения инфекции бывают острые, кратковременно протекающие (ящур, холера, сибирская язва и многие др.). Большинство инфекций относится к острым. Инфекционные болезни людей и животных могут наблюдаться в виде единичных случаев, именуемых спорадическими. Когда инфекция быстро распространяется среди людей и охватывает населенные пункты значительной территории, такое распространение инфекции принято называть – эпидемия, соответственно инфекция среди животных – эпизоотия. Инфекционные болезни по природе отличаются от других заболеваний следующими свойствами: наличием живого возбудителя, заразительностью (передаются от больных здоровым), инкубационным периодом, иммунитетом (невосприимчивостью) переболевших. Последний наступает не всегда.Источники и пути распространения инфекции Основной источник и переносчик заразного начала – больной организм. От больного могут заражаться люди, животные. Зараженная почва может быть источником заражения. Болезни, при которых заражение происходит в результате попадания патогенных микробов из почвы, получили название почвенных инфекций (сибирская язва, газовая гангрена и др.)

Автор: Тайша Әсем Шарафиқызы

ГП на ПХВ Областная инфекционная больница

бактериологическая лаборатория –бак лаборантка

Статьи

Питательные среды

Культивирование, дифференциация и выделение отдельных видов микроорганизмов стало возможным лишь с применением питательных сред. Это особые субстанции, которые создают благоприятные условия для размножения и роста определенного вида микробов и грибов, то есть чистых культур, что открывает возможность изучения их свойств и влияния на организм.

Сегодня питательные среды применяются как в медицине, так и в иных областях, например, в пищевой промышленности, где используются различные виды микроорганизмов для улучшения качества продуктов питания, увеличения срока годности, вкусовых и ароматических свойств. Так, чистые культуры, выделенные посредством использования питательных сред, применяются на хлебобулочных производствах, в винно-водочной промышленности, при создании сыров и молочных продуктов, для получения органических кислот, при квашении и консервации овощей и фруктов, в фармакологии.

Однако большая часть микробиологических исследований приходится на медицинский сектор. Именно поэтому основным покупателем субстратов являются клиники и лаборатории.

Компания БиоВитрум ведущий производитель и поставщик медицинского, диагностического и лабораторного оборудования, а также расходных материалов. Одно из направлений деятельности – это изготовление питательных сред для культивирования и выращивания микроорганизмов. Продукция компании производится из высококачественного сырья, которое содержит компоненты лошадиной и бараньей крови. Преимуществом, поставляемого из Великобритании исходного материала, являются особые условия, в которых выращивают животных. Их корма не содержат антибиотиков, что гарантирует стерильность питательных сред.

БиоВитрум предлагает купить питательные среды всех типов, которые соответствуют европейским стандартам.

Требования, предъявляемые к средам

Производимые сегодня субстраты, применяемые в целях культивирования, дифференциации и выделения микроорганизмов, должны соответствовать определенным показателям:

  • Питательность. Среда обладает жизненно важными для питания и удовлетворения энергетических потребностей, выращиваемых культур. А именно, содержит витамины, минеральные и органические (натуральные) вещества, микроэлементы, входящие в клеточный состав и активизирующие выработку ферментов и не вырабатываемые естественным путем аминокислоты.
  • Наличие водородных ионов. Поскольку микроорганизмы способны питаться только при условии проницаемости клеточной оболочки, то для ее обеспечения необходим оптимальный pH баланс.

Для патогенных микробов нужна слабощелочная питательная среда, для возбудителей туберкулеза пригодной является слабокислотная реакция.

  • Буферность среды. Это свойство обеспечивает стабильность pH баланса, нейтрализуя продукты распада.
  • Изотоничность – показатель давления внутри клетки и в среде, который должен находиться на одинаковом уровне для большинства микроорганизмов.
  • Стерильность среды. Важно исключить наличие посторонних микробов, которые способны оказать влияние на рост интересующей культуры.

Среды должны иметь влажность, поэтому плотные и сухие среды требуют предварительной подготовки. Среды должны обладать окислительно-восстановительными характеристиками, прозрачностью. Такой показатель, как унифицированность обеспечивает возможность выращивания различных микроорганизмов.

Классификация

Каждая культура нуждается в определенных условиях для обильного размножения клеток, их интенсивного роста и оптимального развития, поэтому сложно создать универсальную среду. Помимо этого, в зависимости от целей проводимых исследований, изменяются параметры питательной среды.

Сегодня созданы несколько разновидностей сред, отличающихся свойствами:

  • По составу исходных компонентов их классифицируют на синтетические и натуральные. Последние изготовляются из растительного либо животного сырья. Для снижения себестоимости используются непищевые продукты, например, костную муку или сгустки свернувшейся крови. Синтетические получают из органических, то есть натуральных и минеральных компонентов.
  • По консистенции Среды делятся на жидкие, плотные, полужидкие. Увеличение густоты осуществляется посредством добавления желатина или агар-агара. Последний ингредиент не является для микробов питательным веществом, его задача состоит в создании оптимальной плотности. При этом температура плавления агара достигает 80-100 градусов, что позволяет выращивать на средах с его содержанием микроорганизмы, нуждающиеся в создании парниковых условий. Желатин же представляет собой животный белок, поэтому субстраты с его содержанием можно применять в условиях комнатной температуры. К плотным субстанциям относят свернувшуюся сыворотку крови, яичный белок, картофель. Некоторые производятся в виде порошков и требуют перед употреблением растворения и доведения до нужной консистенции.
  • Состав питательных сред бывает простым и сложным. Первые представляют собой мясопептоидные бульоны, питательный желатин, пептоидные воды. Второй тип, кроме исходных компонентов, включает вещества, способствующие росту тех или иных бактерий. Существуют и специальные среды, используемые там, где не возможен рост бактерий на обычной субстанции.
  • Элективные питательные среды. Применяются для выделения конкретного типа бактерий за счет подавления роста других. Жидкие среды этой категории называют накопительными.
  • Дифференциально-диагностические среды используют для выделения одной культуры по ее ферментативной активности. Консервирующие субстраты используются при транспортировке материалов к месту исследования.

Приготовление сред

От качества питательной среды зависит точность полученных результатов, поэтому кроме соблюдения рецептуры, необходимо придерживаться следующих требований:

  • Стерильность посуды. В производственных условиях, где изготовление осуществляется масштабно, варка сред проводится в специальных котлах. В лабораториях, когда необходимо получить небольшое количество питательных сред следует использовать эмалированную или стеклянную посуду, которая не выделяет кислоты и щелочи. Предварительно все резервуары моют, прополаскиваю и высушивают.
  • Ранее не использованная стеклянная посуда подвергает стерилизации в хлороводородистой кислоте, в которой оставляется на ночь, после чего прополаскивается в соответствии с установленным режимом.

Сам процесс приготовления питательных сред состоит из следующих этапов:

  • Варка, которая осуществляется либо на огне и водяной бане (для лабораторных условий), либо в котлах и автоклавах с подачей пара (в промышленных масштабах).
  • Установка оптимального pH соотношения требует использования бумажных индикаторов, потенциометров, стеклянных электродов.
  • Осветление осуществляется при помощи введения в субстрат, взбитого с водой, яичного белка или кровяной сыворотки, которые в процессе варки увлекают в осадок взвешенные частицы.
  • Фильтрации подвергаются жидкие среды, и на основе расплавленного желатина. Для этого используют тканевые и бумажные увлажненные фильтры. Существенно затрудняется очистка агаровых субстратов, поскольку основной компонент быстро застывает. Поэтому этот процесс чаще заменяется отстаиванием.
  • Стерилизация осуществляется для каждого субстрата в определенный промежуток времени и при необходимой температуре. Эти параметры указаны рецептуре приготовления.

Завершающим этапом является расфасовка питательных сред в посуду – это флаконы, пробирки, чашки Петри. Сосуд заполняется только на 2/3 поскольку при стерилизации среда увеличивается в объеме и может достичь пробки, что повлияет на чистоту и свойства субстрата.

Разливается продукт с использованием воронок, шприцев, пипеток или иных приспособлений.

Каждый сосуд маркируется. На сосуды наносится название продукта, указывается количество и дата производства.

Готовая среда проходит несколько ступеней контроля. Первые испытания на стерильность осуществляются путем помещения продукции в термостат.

Птательная среда отправляется в лаборатории для проведения химических испытаний, целью которого является установление точного pH уровня.

Проводится биологический контроль, который заключается в определении питательных качеств среды.

Виды питательных сред

По своему назначению производимые сегодня питательные составы среды можно разделить на следующие категории:

  • Универсальные среды. Они подходят для размножения различного типа культур.
  • Селективные или избирательные среды. Используются для выделения одного вида микроорганизмов.
  • Дифференциально-диагностические среды, которые открывают возможность отличить бактерии по их ферментативным свойствам, то есть продуктам жизнедеятельности.
  • Специальные среды. Применяются для выращивания тех культур, которые неспособны размножаться на универсальных субстратах.
  • Дифференциально-селективные средыиспользуются для оперативной идентификации бактерий.
  • Полусинтетические питательные составы среды, в состав которых вводят компоненты природного происхождения.

Компания БиоВитрум предлагает широкий ассортимент питательных сред, которые поставляют как во флаконах различного объема, так и в готовом виде в чашках Петри. Последние закупориваются специально разработанной целлюлозной пленкой, которая обеспечивает стерильность среды и срок годности, достигающий 60 дней.

Преимуществом компании БиоВитрум является оперативность поставок, конкурентоспособные цены, соответствие стандартам ГОСТ. Все питательные составы среды изготовляются на собственных мощностях, оснащенных высокотехнологичным оборудованием из сырья Oxoid LTD известного производителя Великобритании.

В компании БиоВитрум можно приобрести 18 наименований продуктов, представленных в каталоге, которые проходя многоступенчатый контроль. Продукция поставляется с полным комплектом документации и маркировкой на русском языке.

Патогенные бактерии

К патогенным бактериям относятся любые микроорганизмы, которые являются потенциальным источником различных заболеваний, а также способны вызывать повреждение каких-либо систем организма. Чаще всего это паразитирующие бактерии по отношению к их носителю. Негативное воздействие патогенных микроорганизмов может осуществляться разными способами – механизмы вызывают интоксикацию, а также могут разрушать ткани и нарушать регуляторные механизмы.

Чаще всего отрицательное влияние выражается в размножении данных возбудителей и воздействии продуктов их жизнедеятельности на носителя. То есть, чем больше увеличивается количество бактерий, тем выше риск занесения инфекций. К особо опасной категории патогенов относятся инфекционные, которые могут мигрировать между хозяевами, причем разными путями передачи, вызывая инфекционные заболевания.

Особенности патогенных микроорганизмов

Особенностью патогенных микроорганизмов является невосприимчивость к окружающей среде. Это связано с их постепенной адаптацией к внешним факторам, в том числе температуре, влажности, а также наличию токсичных солей и элементов. Срок выживания бактерий зависит от состава и свойств воды, а также уровня загрязнения и интенсивности биологических процессов.

Данные микроорганизмы ни в коем случае и ни в каких концентрациях не должны присутствовать в питьевой воде, однако обнаруживаются там регулярно. Они используют воду в качестве среды, из которой возбудитель попадает в организм. Его носителями могут быть люди и животные. Патогенные бактерии могут вызывать серьезные заболевания, которые нередко приводят к различным осложнениям, и в том числе к летальным случаям.

О сроках выживания бактерий в среде

Срок, в течение которого бактерии сохраняют жизнеспособность в условиях внешней среды, может отличаться и прежде всего зависит от их типа, а также характеристик воды. Например, кишечная палочка в водопроводной воде может выживать от 2 до 262 суток, в то время как в речной воде максимальное время снижается и составляет 183 дня.

Также свою роль в данном вопросе играет вид микроорганизма. В ряде случаев патогенные микроорганизмы гибнут, если в воде присутствует бактериофаг. Помимо этого, вредоносные бактерии со временем отмирают под воздействием процесса самоочищения. Однако следует помнить, что даже кратковременное пребывание патогенных микробов, особенно если они имеют фекальное происхождение, может вызвать инфекционные заболевания, в том числе желудочно-кишечные.

Где могут обнаруживаться патогенные бактерии?

Патогенные микроорганизмы могут обнаруживаться во всех видах вод, в колодцах, а также родниках. Изредка они встречаются в скважинах. Если говорить о воде централизованного водоснабжения, то при соблюдении технических норм и правил в ней микробы данной категории обнаруживаться не должны. Любое количество таких микроорганизмов указывает на прямые нарушения в работе систем водоочистки и требует немедленного задействования необходимых мер по восстановлению качества.

Патогенные бактерии в почве

Одной из основных сред проживания болезнетворных микробов является почва. Как и вода, она лишь механический переносчик микробов от одного носителя к другому и не относится к их циклу развития. Попадать в почву бактерии данной группы могут несколькими путями:

  • Вместе с выделениями инфицированных людей и животных.
  • С пищевыми отходами или продуктами питания с истекшим сроком годности.
  • С отходами, имевшими контакт с носителями вирусов.
  • Со сточными водами.

Большинство патогенных бактерий проживает в почве относительно недолго. Это связано с отсутствием питательного субстрата, низкими температурами, наличием кислой или щелочной среды, повышенной влажностью или высыханием, а также другими природными факторами. Однако есть разновидность микробов, которые способны не только выживать в таких условиях, но и становятся частью почвенного биоценоза.

По данному признаку микроорганизмы, проживающие в почве, разделяют на три труппы:

  1. Микробы, которые становятся частью природной экосистемы (бактерия Clostridium botulinum, актиномицеты).
  2. Патогенные микроорганизмы, которые попадают в почву с трупами и выделениями животных и человека, и остаются в ней долгое время (вызывают столбняк, сибирскую язву, туберкулез).
  3. Микрофлора, попадающая в почву таким же путем, но сохраняющаяся в ней короткий промежуток времени (сальмонелла, кишечная палочка).

Определение патогенных микроорганизмов

Выявление патогенных бактерий в воде – сложная процедура, для выполнения которой требуется проведение бактериологического исследования с применением современного оборудования и методик. Для этого отобранная проба воды должна быть направлена в аккредитованную лабораторию, где будет использована для выявления возможных нарушений. Они будут свидетельствовать о необходимости выполнения мероприятий по очистке.

Сложность анализа воды на наличие патогенных микроорганизмов состоит в том, что они, как правило, количественно невоспроизводимы. То есть, отсутствие бактерий Salmonella само по себе не является гарантией того, что в воде могут присутствовать бактерии Shigella, Vibrio или болезнетворные вирусы.

Читать еще:  Хлорелла как выращивать в домашних условиях

Анализ воды на патогенные микробы

Метод микробиологического анализа на патогенные бактерии представляет собой достаточно эффективный способ обнаружения болезнетворных микроорганизмов. Он может быть направлен на комплексное обследование воды, а также точечное определение конкретной группы микробов, которые потенциально способы нанести вред организму человека.

Современный анализ подразумевает определение большого перечня микробиологических показателей, устанавливая точное содержание индикаторных микроорганизмов и бактерий. Основная цель такого исследования – определение концентрации микробов, а также вида, к которому они относятся.

Учитывая, что определить патогенные бактерии при бактериологическом анализе не так просто, в качестве основного показателя загрязненности используется подсчет общего микробного числа в 1 мл воды. Речь о бактериях, образующих колонии. Чаще всего в данном случае используется метод мембранной фильтрации.

В рамках данного исследования определенный объем воды пропускается через мембрану с размером пор 0,45 мкм. В результате, на поверхности мембраны отлагаются все бактерии, которые находятся в воде. Далее фильтр помещается на период 24-48 часов в специальную питательную среду с температурой 30-37 градусов.

Результаты проведенного анализа могут использоваться для дальнейшего выбора системы очистки, которая позволит избавиться от основных источников загрязнения, повысив тем самым качество воды до установленного санитарными нормами.

Очистка сточных вод

Если затрагивать вопрос очистки сточных вод, полное удаление из них патогенных микроорганизмов довольно затруднительно. Исследованиями установлено, что отстаивание и искусственная биологическая очистка не обеспечивают 100% уничтожение болезнетворных бактерий, в том числе кишечной группы. В частности, даже при уменьшении количества кишечных палочек на 99%, они все равно обнаруживаются в очищенной воде в рамках исследования.

Поэтому, до спуска в водоем после механической и искусственной биологической очистки потребуется также применить обеззараживание. И эффективным оно будет только в случае, если в воде нет взвешенных веществ.

Анализ воды в лаборатории «НОРТЕСТ»

Лаборатория НОРТЕСТ – аккредитованный центр, оснащенный всем необходимым для проведения исследований разного уровня сложности. Наша команда квалифицированных специалистов проведет проверку отобранного образца в соответствии с установленными нормами и стандартами. С учетом использования наиболее эффективных методик и отлаженной процедуры их реализации результат исследования будет готов в достаточно короткие сроки.

Ответ на 21 вопрос

21. Питание бактерий. Типы питания. Механизмы переноса веществ в клетку. Факторы роста микроорганизмов.

Как у всего живого, метаболизм микроорганизмов состоит из двух взаимосвязанных, одновременно протекающих, но противоположных процессов — анаболизма, или конструктивного метаболизма, и катаболизма, или энергетического метаболизма.

Обмен веществ у микроорганизмов имеет свои особенности.

Быстрота и интенсивность обменных процессов. За сутки микробная клетка может переработать такое количество питательных веществ, которое превышает ее собственный вес в 30-40 раз.

Выраженная приспособляемость к изменяющимся условиям внешней среды.

Питание осуществляется через всю поверхность клетки. Прокариоты не проглатывают питательные вещества, не переваривают их внутри клетки, а расщепляют их вне клетки с помощью экзоферментов до более простых соединений, которые транспортируются в клетку.

Для роста и жизнедеятельности микроорганизмов обязательно наличие в среде обитания питательных материалов для построения компонентов клетки и источники энергии. Для микробов необходимы вода, источники углерода, кислорода, азота, водорода, фосфора, калия, натрия и других элементов. Требуются также микроэлементы: железо, марганец, цинк, медь для синтеза ферментов. Различные виды микробов нуждаются в тех или иных факторах роста, таких, как витамины, аминокислоты, пуриновые и пиримидиновые основания.

В зависимости от способности усваивать органические или неорганические источники углерода и азота микроорганизмы делятся на две группы — аутотрофов и гетеротрофов.

Аутотрофы (греч. autos — сам, trophic — питающийся) получают углерод из углекислоты (СО 2 ) или ее солей. Из простых неорганических соединений они синтезируют белки, жиры, углеводы, ферменты.

Гетеротрофы (греч. heteros — другой, trophic — питающийся) используют сложные органические соединения, такие как углеводы, спирты, аминокислоты, органические кислоты. Среди гетеротрофных микроорганизмов различают сапрофитов (греч. sapros — гнилой, phyton — растение) и паразитов. Сапрофиты используют мертвые органические соединения. Они широко распространены в природе, разлагают органические вещества, отбросы, участвуя таким образом в санитарной очистке окружающей среды. Паразиты живут и размножаются в тканях человека, животных, растений.

Микробы могут изменять свой тип питания с паразитического на сапрофитный. Их можно культивировать вне организма, на питательных средах. Среди прокариотов исключение составляют риккетсии и хламидии, которые могут жить только в живых клетках хозяина. Их называют строгими, или облигатными паразитами (лат. obligatus — обязательный). Облигатными паразитами являются также все вирусы.

В зависимости от источников энергии и природы доноров микроорганизмы подразделяют на фототрофы (фотосинтезирующие), способные использовать солнечную энергию, и хемотрофы (хемосинтезирующие), получающие энергию за счет окислительно – восстановительных реакций. К фототрофам относятся исключительно сапрофитные микроорганизмы. В патологии человека ведущую роль играют хемосинтезирующие микроорганизмы.

В зависимости от природы доноров электронов хемотрофы подразделяются на хемолитотрофы (хемоавтотрофы) и хемоорганотрофы (хемогетеротрофы).

В зависимости от источников азота – прототрофы – микроорганизмы, способные синтезировать все необходимые им органические соединения (углеводы, АК и др.) из глюкозы и солей аммония. Ауксотрофы – микроорганизмы, не способные синтезировать какое – либо из указанных соединений. Они ассимилируют эти соединения и другие факторы роста в готовом виде из окружающей среды или организма хозяина.

Транспорт питательных веществ

Через клеточную стенку и цитоплазматическую мембрану внутрь клетки прокариотов проникают только небольшие молекулы, поэтому белки, полисахариды и другие биополимеры вначале расщепляются экзоферементами до более простых соединений, которые транспортируются внутрь клетки.

Проникновение питательных веществ в клетку происходит с помощью различных механизмов.

Пассивная диффузия — вещества поступают в клетку за счет диффузии по градиенту концентрации, то есть вследствие того, что концентрация вне клетки выше, чем внутри.

Облегченная диффузия — также совершается по градиенту концентрации, но с участием ферментов-переносчиков, так называемых пермеаз. Этот фермент присоединяет к себе молекулы вещества на внешней стороне цитоплазматической мембраны и отдает его на внутренней стороне в неизмененном виде. Затем свободный переносчик перемещается снова к наружной стороне мембраны, где связывает новые молекулы вещества. При этом каждая пермеаза переносит какое-то определенное вещество.

Эти два механизма переноса не требуют энергетических затрат.

Активный перенос происходит также с участием пермеаз, причем осуществляется против градиента концентрации. Микробная клетка может накопить вещество в концентрации, в тысячи раз превышающих ее во внешней среде. Такой процесс требует затрат энергии, то есть расходуется АТФ.

Транслокация радикалов — это четвертый механизм передачи веществ. Это активный перенос химически измененных молекул, с участием пермеаз. Например, такое простое вещество, как глюкоза, переносится в фосфорилированном виде.

Выход веществ из бактериальной клетки происходит путем пассивной диффузии или путем облегченной диффузии с участием пермеаз.

Факторы роста микроорганизмов:

К факторам роста относят аминокислоты, пуриновые и пиримидиновые основания, липиды, витамины, железопорфирины (гем) и другие соединениями. Некоторые микроорганизмы самостоятельно синтезируют необходимые им ростовые факторы, другие получают их в готовом виде из окружающей среды. Потребность того или другого микроорганизма в определенных ростовых факторах является стабильным признаком, который используется для дифференциации и идентификации бактерий, а также при изготовлении питательных сред для лабораторных и биотехнологических целей.

Аминокислоты. Многие микроорганизмы, особенно бактерии, нуждаются в тех или других аминокислотах (одной или нескольких), поскольку они не могут их самостоятельно синтезировать, например клостридии — в лейцине, тирозине, стрептококки — в лейцине, аргинине и др. Такого рода микроорганизмы называются ауксотрофными по тем аминокислотам или другим соединениям, которые они не способны синтезировать.

Пуриновые и пиримидиновые основания и их производные (аденин, гуанин, цитозин, урацил, тимин и др.) являются факторами роста для разных видов стрептококков, некоторые азотистые основания нужны для роста стафилококков и других бактерий. В нуклеотидах нуждаются некоторые виды микоплазм.

Липиды, в частности компоненты фосфолипидов — жирные кислоты, нужны для роста некоторых стрептококков, микоплазм. Все виды микоплазм ауксотрофны по холестерину и другим сте-ринам, что отличает их от других прокариот. Эти соединения входят в состав их цитоплазматической мембраны.

Витамины, главным образом группы В, входят в состав ко-ферментов или их простетических групп. Многие бактерии ауксотрофны по определенным витаминам. Например, коринебактерии дифтерии, шигеллы нуждаются в никотиновой кислоте или ее амиде, который входит в состав НАД и НАДФ, золотистый стафилококк, пневмококк, бруцеллы — тиамине (ВО, входящем в состав пирофосфата, некоторые виды стрептококков, бациллы столбняка — в пантотеновой кислоте, являющейся составной частью кофермента КоА и т. д. Кроме того, факторами роста для многих бактерий являются фолиевая кислота, биотин, а также темы — компоненты цитохромов. Последние необходимы гемофильным бактериям, микобактериям туберкулеза и др.

Биологическое окисление (энергетический метаболизм)

Процесс биологического окисления дает энергию, необходимую для жизни клетки. Сущность процесса заключается в последовательном окислении субстратов с постепенным освобождением энергии. Энергия запасается в молекулах АТФ.

Окислению подвергаются углеводы, спирты, органические кислоты, жиры и другие вещества. Но для большинства микроорганизмов источником энергии служат гексозы, в частности, глюкоза.

У микроорганизмов существует два типа биологического окисления: аэробный и анаэробный. При аэробном типе участвует кислород, и этот процесс называется дыханием в строгом смысле слова. При анаэробном типе биологического окисления освобождение энергии из органических молекул происходит без участия кислорода и называется брожением.

Начальный этап анаэробного расщепления глюкозы с образованием пировиноградной кислоты (ПВК) происходит одинаково. Эта

кислота является тем центральным пунктом, от которого расходятся пути дыхания и многих видов брожений.

При аэробном типе дыхания пировиноградная кислота вступает в цикл трикарбоновых кислот. Водород ПВК поступает в дыхательную цепь. Это цепь окислительных ферментов (цитохромы и цитохромоксидаза). По цепи цитохромов передается водород и присоединяется к активированному под действием цитохромоксидазы кислороду с образованием воды. Конечные продукты аэробного окисления глюкозы — диоксид углерода (углекислота) и вода. В процессе дыхания на одну молекулу глюкозы образуется 38 молекул АТФ.

При анаэробном типе биологического окисления энергия образуется в результате брожений. При спиртовом брожении ПВК превращается в конечном итоге в спирт и углекислоту. Конечным продуктом молочнокислого брожения является молочная кислота, маслянокислого брожения — масляная кислота. При процессах брожения на одну молекулу глюкозы образуется только 2 молекулы АТФ.

Микробную природу брожений впервые открыл и доказал Пастер. Изучая маслянокислое брожение, Пастер впервые столкнулся с возможностью жизни без кислорода, то есть с анаэробиозом. Он также установил явление, которое впоследствии было названо «эффектом Пастера»: прекращение процесса брожения при широком доступе кислорода.

Анаэробиоз существует только среди прокариотов. Все микроорганизмы по типу дыхания делятся на следующие группы: облигатные аэробы, облигатные анаэробы, факультативные анаэробы, микроаэрофилы.

Облигатные аэробы размножаются только при наличии свободного кислорода. К ним можно отнести микобактерии туберкулеза, холерный вибрион, чудесную палочку. ,

Облигатные или строгие анаэробы получают энергию при отсутствии доступа кислорода. Они имеют неполный набор окислительно-восстановительных ферментов, у них нет цитохромной системы, поэтому у них не происходит полного окисления субстрата (глюкозы) до конечных продуктов — СО 2 и Н 2 О. Более того, в присутствии свободного кислорода образуются токсические соединения: перекись водорода Н 2 О 2 и свободный перекисный радикал кислорода О 2 . Аэробы при этом не погибают, так как продуцируют ферменты, разрушающие эти токсические соединения (супероксиддисмутазу и каталазу). Спорообразующие анаэробы в этих условиях прекращают размножение и превращаются в споры. Неспорообразующие анаэробы погибают даже при кратковременном контакте с кислородом.

К облигатным спорообразующим анаэробам относятся клостридии столбняка, ботулизма, анаэробной раневой инфекции; к неспорообразующим анаэробам — бактероиды, пептобактерии, бифидумбактерии.

Большинство патогенных бактерий — факультативные (условные) анаэробы, например, энтеробактерии. Они имеют полный набор ферментов и при широком доступе кислорода окисляют глюкозу до конечных продуктов; при низком содержании кислорода они вызывают брожение.

Микроаэрофилы размножаются в присутствии небольших количеств кислорода. Например, кампилобактеры могут размножаться при 3-6% кислорода.

Рост и размножение микроорганизмов

Термином «рост» обозначают увеличение размеров отдельной особи, а «размножение» — увеличение числа особей в популяции.

Бактерии размножаются путем бинарного деления пополам, реже путем почкования. У грамположительных бактерий из клеточной стенки и цитоплазматической мембраны образуется перегородка, врастающая внутрь. У грамотрицательных бактерий образуется перетяжка, и затем происходит разделение клетки на две особи.

Делению клеток предшествует репликация бактериальной хромосомы по полуконсервативному типу. При этом двуспиральная цепь ДНК раскручивается, каждая нить достраивается комплиментарной нитью и в результате каждая дочерняя клетка получает одну материнскую нить и одну вновь образованную.

Быстрота размножения разных видов бактерий различна. Большинство бактерий делятся каждые 15-30 минут. Микобактерии туберкулеза делятся медленно одно деление за 18 часов, спирохеты — одно деление за 10 часов.

Если посеять бактерии в жидкую питательную среду определенного объема и затем каждый час брать пробу и определять количество живых бактерий в такой замкнутой среде и составить график, на котором по оси абсцисс откладывать время в часах, а по оси ординат логарифм количества живых бактерий, то получим кривую роста бактерий. Рост бактерий подразделяют на несколько фаз (рис. 5):

латентная фаза (лаг-фаза) — бактерии адаптируются к питательной среде, количество их не увеличивается;

фаза логарифмического роста — количество бактерий увеличивается в геометрической прогрессии;

фаза стационарного роста, во время которой число вновь образованных бактерий уравнивается числом погибших, и количество живых бактерий остается постоянным, достигая максимального уровня. Это М-концентрация — величина, характерная для каждого вида бактерий;

фаза отмирания, когда число отмирающих клеток начинает преобладать над числом жизнеспособных бактерий вследствие накопления продуктов метаболизма и истощения среды.

Культура бактерий в такой замкнутой несменяющейся среде называется периодической. Если же в засеянный объем непрерывно подают свежую питательную среду и удаляют такое же количество жидкости, то такую культуру называют непрерывной. Количество живых бактерий в такой культуре будет постоянно в М-концентрации. Непрерывное культивирование применяют в микробиологической промышленности.

Роспотребнадзор

Роспотребнадзор

О безопасности пищевых продуктов — Надзор за продукцией в обороте

Надзор за продукцией в обороте

  • ВНИМАНИЕ! МОШЕННИКИ ПРЕДСТАВЛЯЮТСЯ СОТРУДНИКАМИ РОСПОТРЕБНАДЗОРА

О безопасности пищевых продуктов

Безопасность пищевых продуктов является основным «законом» здорового питания населения. Безопасность продуктов определяется по микробиологическим, вирусологическим, паразитологическим, химическим, радиологическим и нутрициологическим показателями.

Так, микробиологическая безопасность определяется по 4 группами микроорганизмов:

1.Патогенные микроорганизмы, в т.ч. сальмонеллы.

2.Условно-патогенные микроорганизмы: E.coli, S.aureus, бактерии рода Proteus, B.cereusи сульфитредуцирующие клостридии.

3.Санитарно-показательные: количество мезофильных аэробных микроорганизмов (КМАФАнМ) и бактерий группы кишечных палочек – БГКП (колиформы);

4.Микроорганизмы порчи – в основном это дрожжи и плесневые грибы.

Для большинства групп микроорганизмов нормируется масса продукта, в которой не допускаются группы кишечных палочек, большинство условно-патогенных микроорганизмов, а также патогенные микроорганизмы, в.т.ч. сальмонеллы. В продуктах массового потребления, для которых отсутствуют микробиологические нормативы, патогенные микроорганизмы, в т.ч. сальмонеллы, не допускаются в 25 г. продукта.

Сальмонеллы – это многочисленный род энтеробактерий. Видов сальмонелл девять, а вот разновидностей их больше тысячи. Сальмонелла – это патогенный микроорганизм, который провоцирует заболевание под названием сальмонеллез. Сальмонеллез относится к чрезвычайно распространенным заболеванием.

К пищевым продуктам, являющимися факторами передачи сальмонелл относятся в первую очередь мясо, птица, яйца, молоко и молочные продукты, рыба и морепродукты, а также майонезы и салатные соусы, сливочные десерты.

Загрязнение продуктов сальмонеллами происходит в результате нарушении правил убоя и разделки туш, использование молока и мяса от больных сальмонеллезом животных, работы на пищевых объектах бактерионосителей и нарушения правил личной гигиены, нарушении поточности пищевого производства и др. Размножению попавших в организм продукт или блюдо сальмонелл способствует нарушение санитарных норм и правил при изготовлении и обороте пищевой продукции, особенно теплового режима обработки и условий хранения.

Повышенному риску подвергаются особенно маленькие дети и пожилые люди.

При попадании возбудителя в организм с пищей, инкубационный период заболевания составляет двенадцать — двадцать часов. Проявления сальмонеллеза зависят от того, в какой форме протекает заболевание.

Самая распространенная форма — это гастроинтестинальная. На долю этой формы сальмонеллеза выпадает до девяноста восьми процентов случаев заболевания. У заболевшего человека сразу проявляются признаки интоксикации, повышенная температура, тошнота, рвота, диарея. Все эти проявления приводят к обезвоживанию организма человека. Обезвоживание представляет основную опасность для здоровья. Лечение сальмонеллеза должно проводится в стационаре.

Для профилактики сальмонеллеза следует соблюдать санитарно-эпидемиологические требования при производстве и обороте пищевой продукции.

Читать еще:  Как правильно выращивать клубнику на открытом грунте?

IX Международная студенческая научная конференция Студенческий научный форум — 2017

СРЕДА ОБИТАНИЯ МИКРООРГАНИЗМОВ

  • Авторы
  • Файлы работы
  • Сертификаты

К микроорганизмам относятся простейшие (одноклеточные животные), бактерии, спирохеты, риккетсии (внутриклеточные паразиты, возбудители особой группы заразных болезней, так называемых риккетсиозов), вирусы и грибки.

Среды обитания микроорганизмов разнообразны — воздух, вода, почва, растения, живые организмы. Они могут обитать в условиях, выходящих за обыденное восприятие, при температурах выше 40 С, и в то же время некоторые микроорганизмы существуют при температурах выше 100 С. Условно среды обитания микроорганизмов можно разделить на две большие группы:

— биогенная среда обитания;

— абиогенная среда обитания.

Биогенной средой обитания микроорганизмов являются организмы растений, животных и человека. Прежде всего, микробы заселяют внешние покровы, составляя нормальную микрофлору поверхности. Совершенно иным субстратом оказывается больной организм. Некоторые или многие защитные механизмы и барьеры нарушены, и ослабленный организм становится подобием питательной среды, где развиваются патогенные микробы. Они поражают ткани и органы растений, человека и животных.

Атака микробов — возбудителей болезней на многоклеточный организм не всегда успешна и требует завоевания микроорганизмами их среды обитания (многие облигатные паразиты не могут существовать в иных условиях). Организмы и их органы активно защищаются от инфекции. Барьерами, препятствующими колонизации тканей высших организмов, оказываются разные вещества и структуры:

— кожа защищается от поселения микробов жирными кислотами;

— слизистая оболочка носа и глаз — лизоцимом;

— кровь — фагоцитами и антителами;

— ткани рыб — протаминами;

— корни растений -корковым слоем;

— фрукты — кутикулой и кислотами;

— деревья — смолами, танином;

— ткани растений — фенольными соединениями, гликозидами.

К такой ситуации оказывается приспособленным и микробный мир. Микробы поселяются в организмах промежуточных хозяев. Часто хозяевами являются многие насекомые, нематоды (черви), животные (особенно опасны грызуны), птицы и даже человек (бацилло- и вирусоносители, оставаясь здоровыми, опасны для окружающих). Промежуточные хозяева составляют резервуар (очаг) заболеваний, из которого часто развиваются эпидемии [2,4].

Например, грызуны представляют собой резервуар возбудителей лептоспироза, листериоза для домашних животных; сельскохозяйственные животные — резервуар возбудителя бруцеллёза для людей; дикие плотоядные семейства собачьих –резервуар вируса бешенства для домашних животных [3].

В то же время выделяют и условно патогенных микроорганизмов, носительство которых является нормальным явлением. Но при снижении иммунитета и резистентности организма, при нарушении ветеринарно-санитарных правил и условий кормления, содержания и ухода животных, некоторые из них способны вызывать заболевания. Довольно часто такое явление встречается у молодняка. Большинство инфекционных болезней молодняка вызываются факультативно патогенными микроорганизмами, которые широко распространены в природе.

Противоположным описанным выше случаям взаимоотношений микробов с другими организмами представляют собой многочисленные примеры симбиоза микроорганизмов и других организмов, стоящих на разных уровнях организации. Например, питание жвачных животных теснейшим образом связано с активной деятельностью сообщества строгих анаэробов — бактерий в рубце, где они участвуют в переработке растительных кормов. Многие моллюски, глубоководные рыбы и другие животные имеют светящиеся органы, в которых находятся фотобактерии. Микроорганизмы в составе такого симбиоза получают защиту и благоприятные условия для питания, а для животных свечение может играть важную роль в привлечении объектов охоты, а также полового партнера.

Абиогенной средой обитания микроорганизмов являются почва, вода, воздух. При анализе качественного состава микрофлоры обнаружены представители всех основных физиологических групп микроорганизмов, обеспечивающих круговорот азота, углерода, фосфора и других элементов.

В то же время почва, вода, воздух в ряде случаев являются резервуаром сохранения, размножения и распространения патогенных микробов [2,4].

Некоторые виды микроорганизмов обитают как в биогенной среде, так и в абиогенной. Например, Clostridium perfringens в вегетативной форме, образуя капсулу, развивается и размножается в организме животных, вызывая анаэробную дизентерию и инфекционную энтеротоксемию. При этом, попадая во внешнюю среду, образует спору. Споровая форма возбудителя сохраняется в почве до 4 лет, в воде — около 20 мес, на поверхности шерсти и в шкуре — более 2 лет, в навозе — 3-5 сут. Кипячение инактивирует возбудителя за 15-20 мин, температура 90 °С — за 30 мин. Вегетативная форма возбудителя погибает, и токсины инактивируются под действием кислорода, солнечного света и высокой температуры [1].

Микроорганизмы полностью заселили нашу планету. Они есть везде – в воде, на суше, в воздухе, им не страшны высокие и низкие температуры, не критично наличие или отсутствие кислорода или света, высокие концентрации солей или кислот.

Микроорганизмы играют большую роль во многих процессах, происходящих в природе. Без их деятельности невозможно существование жизни на Земле. Вокруг нас постоянно обитает огромное количество микробов. Каждый отдельный микроорганизм ничтожен по величине, но во всей массе микробы обладают огромной созидательной и разрушительной силой.

Куриленко, А. Н. Инфекционные болезни молодняка сельскохозяйственных животных [Текст]: учеб. пособие / А. Н. Куриленко, В. Л. Крупальник. – М.: Колос, 2000.

Общая и ветеринарная экология [Текст]: учебник для студ. вузов, обуч. по спец. 111201 «Ветеринария» / В. Н. Кисленко, Н. А. Калиненко; Меж-дународная ассоциация «Агрообразование». — М.: КолосС, 2006. — 344 с.

Общая эпизоотология / А.А.Сидорчук, Е.С.Воронин, А.А.Глушков и др. – М.: Колос, 2004 – 176 с.

Экология [Текст]: учебник для студ. вузов : рек. М-вом образования РФ / В. И. Коробкин, Л. В. Передельский. — 13-е изд. — Ростов н/Д: Феникс, 2008. — 602 с.

Роль факторов среды в процессах культивирования клеток.

Новые аппаратурные решения для контроля и управления процессом культивирования.

В настоящей статье рассмотрены вопросы влияния факторов среды на процессы культивирования клеток, приведен краткий обзор современных аппаратурных решений для контроля параметров питательной среды. Показано, что использование биотехнологических анализаторов позволяет более информативно изучать процессы культивирования микроорганизмов (клеток млекопитающих и др).

Введение

Важнейшей целью технолога при проектировании и эксплуатации ферментационного отделения любого биотехнологического производства является обеспечение максимально благоприятных условий для роста культуры, увеличения выхода целевого продукта. Это касается как поддержания заданной температуры процесса, уровня pH, так и состава и свойств питательной среды. Состав питательных сред должен в наибольшей мере соответствовать потребностям штамма-продуцента. В непрерывнодействующих процессах культивирования задача технолога сводится, в конечном итоге, к постоянному поддержанию необходимых концентраций питательных веществ (и кислорода) в ходе промышленной эксплуатации ферментера и дозированному введения кислоты/щелочи для pH-статирования. Более сложные проблемы возникают при производстве метаболитов, когда в ходе периодического процесса культивирования состав среды, окружающей клетки штамма-продуцента, должен изменяться в зависимости от фазы роста культуры, ее состояния и уровня активности. Именно это обстоятельство затрудняет перевод такого рода производств на непрерывный режим эксплуатации, да и при периодическом режиме требует от обслуживающего персонала постоянного контроля и управления процессом.

Для решения этих задач современный этап развития промышленной биотехнологии требует надежных экспресс-методов количественного изучения свойств живых клеток как продуцента целевого продукта, а также концентрации питательных веществ и метаболитов. В последние годы разрабатываются и внедряются новые аппаратурные решения для всестороннего экспресс-контроля культуры и питательной серды. Относительно новым классом подобных приборов являются биотехнологические анализаторы, с помощью которых можно получать данные о концентрации питательных веществ и метаболитов в культуральной среде в режиме онлайн. Принцип работы таких анализаторов основан на биосенсорных технологиях, использование которых позволяет получать точные воспроизводимые результаты в течение 1-2 мин.

Обзор основных факторов культуральной среды и их роли в процессе культивирования

В таблице 1 приведены факторы культуральной среды, которые определяют рост и биосинтетическую активность продуцентов. Рассмотрим данные факторы и методы управления ими более подробно.

Состав и концентрация питательных веществ определяют метаболизм клеток-продуцентов. В зависимости от типа процесса в качестве таких веществ могут выступать глюкоза, сахароза, лактоза, ксилоза, крахмал, целлюлоза, этанол и др. Состав питательных веществ определяется на этапе составления композиции питательной среды, а концентрация может поддерживаться или меняться в ходе ферментации в зависимости от способа.

При периодическом способе культивировании в ферментер загружают сразу весь объем питательной среды и вносят посевной материал. Выращивание микроорганизмов проводят в оптимальных условиях в течение определенного времени, после чего процесс останавливают, сливают содержимое ферментера и выделяют целевой продукт. Этап роста культуры включает: лаг-фазу, экспоненциальную фазу, фазу замедления роста, стационарную фазу, фазу отмирания.

Широко применяют периодическое культивирование с подпиткой. Существует также объемно-доливочное культивирование, когда часть объема из биореактора время от времени изымается при добавлении эквивалентного объема среды (полунепрерывное культивирование).

При непрерывном способе питательная среда непрерывно подается в ферментер (биореактор), в котором создают оптимальные условия для роста микроорганизмов, а из ферментера (биореактора) также непрерывно вытекает культуральная жидкость вместе с микроорганизмами. В непрерывных процессах биообъект поддерживается в экспоненциальной фазе роста. При этом существует равновесие между приростом биомассы за счет деления клеток и их убылью в результате разбавления свежей средой.

Продукты метаболизма (например, лактата или аммиака) и ингибиторы замедляют биохимические реакции, а следовательно, и в целом процесс ферментации. Такие вещества следует выводить из среды ферментации. Для этой цели в настоящий момент могут быть использованы ряд инструментальных решений, например, ротационный фильтр. (Роторный фильтр основан на технологии просеивания при вращении. Он может быть вставлен непосредственно в сосуд биореактора или использоваться как внешняя проточная система. В первом случае преимущество состоит в компактности системы.)

Значение pH и температуры регулируют скорость биохимических реакций. Кислотность питательной среды особое значение имеет для биохимических реакций, протекающих в клетках-продуцентах. Концентрация в растворе ионов водорода оказывает влияние на физико-химические свойства и биологическую активность белков и нуклеиновых кислот, поэтому для оптимального протекания культивирования поддержание кислотно-основного гомеостаза является задачей исключительной важности. В ферментере постоянное значение pH поддерживается путем дозирования щелочи/кислоты. В зависимости от природы продуцента оптимальный диапазон значения pH могут различаться. Например, при культивировании большинства патогенных бактерий оптимальна слабощелочная среда (рН 7,2—7,4). Исключение составляют холерный вибрион — его оптимум находится в щелочной зоне (рН 8,5—9,0) и возбудитель туберкулеза, нуждающийся в слабокислой реакции (рН 6,2—6,8).

Задача термостатирования, то есть поддержания постоянной температуры процесса в диапазоне 2-3 градусов, аппаратурно решается с помощью термостатирующих рубашек (водяных, воздушных и др). Например, оптимальная температура культивирования клеток млекопитающих составляет составляет +36-37 градусов, насекомых +20-25 градусов.

Осмотическое давление является важнейшим физиологическим параметром, в ходе культивирования оно поддерживается с помощью разбавления или добавления новых порций среды. Величина осмотического давления питательных сред в основном зависит от концентрации NaCl, оптимальное значение при +38 градусов составляет 7,6 атм.

Технологическое оформление биотехнологических процессов в сильной степени определяется отношение микроорганизма – продуцента к кислороду. Культуры бывают как аэробные, так и анаэробные. В первом случае кислород обеспечивает метаболизм. Анаэробная ферментация может проводиться в условиях полной защиты культуральной среды от кислорода (если микроорганизмы являются облигатными анаэробами) или просто без подачи дополнительной кислородной смеси.

Углекислый газ служит источником углерода для автотрофов. Некоторые гетеротрофные микроорганизмы нуждаются в нем, а некоторые наоборот замедляют метаболизм в присутствии СО2. Поэтому концентрация углекислого газа во многих случаях является важным параметром процесса ферментации.

Конструкция мешалки ферментера, а также скорость ее вращения регулирует процессы массопереноса, трансфера питательных веществ к продуцентам и отвода метаболитов.

Таблица1. Основные факторы среды, определяющие рост и биосинтетическую активность продуцентов.

Возможности современных ферментеров для контроля и управления факторами среды. Биотехнологические анализаторы

Ферментер (биореактор) занимает ключевое место в аппаратурном оформлении биотехнологического процесса. Он представляет собой аппарат для глубинного выращивания (культивирования) микроорганизмов (или культур клеток) в питательной среде в условиях стерильности, интенсивного перемешивания, непрерывного продувания стерильным воздухом и постоянной температуры.

Современные ферментационные аппараты позволяют контролировать и управлять процессом культивирования клеток и добиваться высоких результатов в получении целевого продукта. Однако даже самый современный ферментер не позволит технологу контролировать и управлять всеми факторами среды (см. табл. 1). Во многих случаях технолог или оператор ферментационного отделения вынужден использовать рутинные методики для определения, например, концентрации метаболитов или питательных веществ. В качестве альтернативы рутинным методикам в последнее время широкое распространение получили биотехнологические анализаторы. Их работа основана на использовании биосенсоров, время выполнения анализа составляет 1-2 мин.

Данные о биотехнологическом процессе, полученные с помощью ферментера и биотехнологического анализатора, являются мощным инструментом для управления ферментацией в непрерывном и периодических режимах. В таблице 2 обобщены аппаратурные методы управления факторами среды при использовании ферментера в комплекте с анализатором. При этом в таблице использованы данные о характеристиках анализатора Bioprfile FLEX как самого современного и мощного биотехнологического анализатора на настоящий момент, который способен заменить несколько отдельных приборов или рутинных методик. Bioprofile FLEX позволяет оператору в экспресс-режиме измерять концентрации питательных веществ, метаболитов, осмотическое давление, а также измерять физиологический статус продуцента. Кроме того анализатор может быть интегрирован в контроллер ферментера, а управление подпиткой автоматизировано.

В многочисленных опубликованных статьях описано успешное использование анализаторов Bioprofile или аналогов для решения задач составления оптимальных сред, оптимизации подпитки, увеличения выхода целевого продукта и др. Поэтому использование биотехнологических анализаторов на производствах и в лабораториях является стандартным и доказано эффективным.

Таблица 2. Основные факторы среды, определяющие рост и биосинтетическую активность продуцентов, аппаратурные способы контроля и управления ими.

Выводы

  • При непрерывном и периодическом культивировании актуальна задача экспресс-контроля концентрации питательных веществ и метаболитов в культуральной среде, оценки физиологического состояния продуцента.
  • Современные ферментеры позволяют контролировать и управлять основными параметрами культуральной среды, но только с их применение невозможно решить задачу оперативного контроля концентрации питательных веществ и метаболитов, а также изучения физиологического статуса продуцента.
  • Использование технологом/оператором биотехнологического производства анализаторов Bioprofile FLEX или аналогов является эффективным и надежным экспресс-инструментом количественного изучения свойств продуцента, концентрации питательных веществ и метаболитов.

Большинство патогенных микроорганизмов выращивают

В норме организм человека населён различными бактериями и простейшими, которые не вызывают инфекционных заболеваний. Инфекционный процесс возникает при поражении патогенной микрофлорой тканей и слизистых оболочек организма хозяина. Патоген — агент, способный вызвать инфекционный процесс.

Представителей нормальной микрофлоры считают условно-патогенными (комменсалами). Патогенность — способность микроорганизма вызывать заболевание макроорганизма. Вирулентность — степень патогенности (способность вызвать тяжёлое течение заболевания).

Например, основной фактор, определяющий патогенность Streptococcus pneumoniae, — капсула, без которой этот микроорганизм не может вызвать инфекцию. В роли возбудителей могут выступать простейшие и некоторые многоклеточные организмы. Они также могут быть патогенными и условно-патогенными.

Типы патогенных микроорганизмов

Облигатные патогены практически всегда вызывают заболевание (например, Treponema pallidum, ВИЧ). Условно-патогенные микроорганизмы вызывают заболевание только при определённых условиях.

Например, Bacteroides fragilis (комменсал) — представитель нормальной микрофлоры кишечника, но при попадании в брюшную полость (особенно вместе с Е. coli) он может стать причиной абсцесса; Staphylococcus aureus является комменсалом бактериальной флоры передних отделов носовых проходов, он может быть причиной заболевания только при попадании на раневую поверхность.

Другие микроорганизмы считают оппортунистическими патогенами. Они обычно поражают людей со слабой иммунной системой. Например, Pneumocystis jiroveci может быть причиной пневмонии только у пациентов со сниженным Т-клеточным иммунитетом.

Токсины патогенных микроорганизмов

Эндотоксины — стимуляторы выработки ИЛ-1 и ФНО-а макрофагами, вызывающие развитие лихорадки и шока.

Экзотоксины — вещества белковой структуры, оказывающие местное или системное повреждающее воздействие на макроорганизм. Большинство из них состоит из нескольких субъединиц, одна из которых способствует прикреплению или проникновению в клетки-мишени, а вторая обусловливает физиологический эффект.

Классический пример — холерный токсин, В-субъединица которого связывается с эпителиальными клетками, а А-субъединица активирует аденилатциклазу и усиливает отток ионов натрия и хлора из клетки, способствуя возникновению диареи.

Некоторые экзотоксины выступают в роли суперантигенов, вызывая неспецифическую активацию Т-клеток, усиливая выработку медиаторов воспаления — цитокинов, что приводит к развитию ярко выраженных физиологических эффектов (лихорадки, шока, желудочно-кишечных расстройств, сыпи).

Некоторые экзотоксины влияют на синтез белка (например, дифтерийный токсин и синегнойный экзотоксин А), в то время как другие нарушают нервно-мышечную передачу (столбнячный и ботулиновый токсины).
В большинстве случаев антитела к токсинам нейтрализуют их эффекты и обладают протективным действием.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector